Neural Langevin Dynamical Sampling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Langevin-Type Stochastic-Dynamical Particles for Sampling and Rendering Implicit Surfaces

We propose a new sampling method for 2D and 3D implicit surfaces. The method is based on a stochastic process defined by the Langevin equation with a Gaussian random-force term. Our Langevin equation describes a stochastic-dynamical particle, which develops in time confined around the sampled implicit surface with small width. Its numerically generated solutions can be easily moved onto the sur...

متن کامل

Natural Langevin Dynamics for Neural Networks

One way to avoid overfitting in machine learning is to use model parameters distributed according to a Bayesian posterior given the data, rather than the maximum likelihood estimator. Stochastic gradient Langevin dynamics (SGLD) is one algorithm to approximate such Bayesian posteriors for large models and datasets. SGLD is a standard stochastic gradient descent to which is added a controlled am...

متن کامل

Dynamical Symmetry Breaking on Langevin Equation : Nambu · Jona - Lasinio Model

In order to investigate dynamical symmetry breaking, we study Nambu·JonaLasinio model in the large-N limit in the stochastic quantization method. Here in order to solve Langevin equation, we impose specified initial conditions and construct “effective Langevin equation” in the large-N limit and give the same non-perturbative results as path-integral approach gives. Moreover we discuss stability...

متن کامل

Robust and efficient configurational molecular sampling via Langevin dynamics.

A wide variety of numerical methods are evaluated and compared for solving the stochastic differential equations encountered in molecular dynamics. The methods are based on the application of deterministic impulses, drifts, and Brownian motions in some combination. The Baker-Campbell-Hausdorff expansion is used to study sampling accuracy following recent work by the authors, which allows determ...

متن کامل

Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling

Monte Carlo sampling for Bayesian posterior inference is a common approach used in machine learning. The Markov Chain Monte Carlo procedures that are used are often discrete-time analogues of associated stochastic differential equations (SDEs). These SDEs are guaranteed to leave invariant the required posterior distribution. An area of current research addresses the computational benefits of st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2972611